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13C-NMFA	� Isotopic non-stationary 13C-metabolic flux 
analysis

SSR	� Variance-weighted sum of squared residuals

Introduction

Metabolic flux analysis (MFA) has been a cornerstone of met-
abolic engineering since the inception of the field [70, 75]. In 
the past three decades, various flux analysis techniques have 
been developed and applied to elucidate intracellular metabo-
lism in a wide range of biological systems, ranging from sim-
ple microbes such as Escherichia coli [44] to more complex 
eukaryotic systems such as Saccharomyces cerevisiae [49], as 
wells as plants [32, 37, 46, 54, 67], mammalian cells [29, 50, 
63, 89], thermophiles [71, 74], obligate anaerobes [13], and 
other cellular systems [1, 53, 88, 94]. MFA studies were ini-
tially based on balancing fluxes around intracellular metabo-
lites within an assumed network stoichiometry, the so-called 
stoichiometric MFA [77], where external rate measurements 
such as glucose uptake rate, growth rate, and CO2 evolution 
rate provided constraints to determine intracellular fluxes. In 
the past decade, however, a number of more advanced MFA 
techniques have emerged for determining metabolic fluxes 
with improved accuracy and precision. In this mini-review, 
we provide an overview of the different MFA methods that 
have been developed and briefly highlight the advantages and 
limitations of each technique.

Methods in metabolic flux analysis

Figure  1 shows the classifications of the various MFA 
methods that have been developed thus far. The three main 
distinguishing characteristics between the different MFA 
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methods are (1) whether metabolic steady-state is assumed 
for the system, or not; (2) whether stable-isotope tracers 
are applied, or not; and (3) whether isotopic steady-state is 
assumed for the system, or not.

Flux analysis at metabolic steady‑state: MFA

The key to calculating metabolic fluxes in living cells with 
stationary (or stoichiometric) MFA (Fig. 1a) is to analyze 
the biological system as an integrated biochemical network 
model. MFA relies on balancing fluxes around intracellular 
metabolites within an assumed metabolic network model. 
The first step in the analysis is to express the biochemical 
network model as a stoichiometric matrix in which rows 
represent balanced intracellular metabolites and columns 
represent metabolic fluxes in the model. The stoichiomet-
ric model also includes a “biomass reaction” that describes 
the drain of precursor metabolites needed for cell growth, 
which is constructed based on the measured biomass com-
position [45]. By assuming metabolic (pseudo) steady-state 
for intracellular metabolites, metabolic fluxes (v) are con-
strained by the stoichiometry matrix (S):

To estimate metabolic fluxes, the stoichiometric con-
straints are complemented with measured external meta-
bolic rates (r), such as growth rate, substrate uptake, and 
product accumulation rates:

The combined system of Eqs. 1 and 2 is then solved by 
least squares regression:

(1)S × v = 0

(2)R × v = r

Using this approach metabolic fluxes can be esti-
mated in systems that are fully determined (i.e., con-
taining all the necessary external rate measurements), 
and overdetermined (i.e., containing a redundant set 
of external rate measurements). The main advantage 
of MFA is that it is easy to apply and thus accessible 
to many researchers, since it only requires simple lin-
ear algebra and relies on relatively robust measure-
ments of extracellular metabolites [52]. A limitation of 
MFA for analysis of many biological systems is, how-
ever, that the number of constraints (i.e., stoichiometric 
and rate measurements) is often insufficient to observe 
all important intracellular metabolic pathways. To make 
the system fully observable, additional assumptions are 
needed, for example, leaving out specific pathways that 
are assumed to carry little or no flux, or including cofac-
tor balances (e.g., NADH, NADPH, and ATP balances) 
as additional constraints. However, the use of cofac-
tor balances is generally not encouraged. The presence 
of isoenzymes with alternative cofactor specificities, 
e.g., NADH- and NADPH-dependent malic enzyme or 
isocitrate dehydrogenase, and uncertainties regarding 
transhydrogenase activity and other futile cycles ren-
ders cofactor balances often uninformative. In some 
studies, NADH and NADPH were lumped together [15, 
59], and external rates of NH3, CO2, and O2 were used 

(3)min SSR =

∑
(r − rm)2/σ 2

r

s.t. R × v = r

S × v = 0

Fig. 1   Classification of differ-
ent methods for metabolic flux 
analysis. The main distinguish-
ing characteristics between the 
different metabolic flux analysis 
methods are whether stable-
isotope tracers (such as 13C) are 
applied, and whether metabolic 
steady state is assumed. a 
MFA at metabolic steady state 
(without isotopic tracers); b 
13C-MFA at metabolic and iso-
topic steady state; c 13C-NMFA 
at metabolic steady state and 
isotopic non-steady state; d 
DMFA at metabolic non-steady 
state (without isotopic tracers); 
and e 13C-DMFA at metabolic 
and isotopic non-steady state



319J Ind Microbiol Biotechnol (2015) 42:317–325	

1 3

as additional constraints to make the system observable 
[59, 96]. Alternatively, flux balance analysis (FBA) can 
be applied to quantify fluxes in underdetermined sys-
tems (Fig.  2) [60]. Here, in addition to applying con-
straints from measured extracellular rates, inequality 
constraints such as upper and lower bounds on fluxes are 
used, and an assumed biological objective is imposed on 
the model, for example, maximum growth rate or maxi-
mum ATP production [27]. In practice, however, FBA 
returns a large solution space consisting of many flux 
distributions that can all maximize the assumed cellular 
objective.

Flux analysis at metabolic and isotopic steady state: 
13C‑MFA

13C-based metabolic flux analysis (13C-MFA) is a more 
advanced technique for estimating metabolic fluxes in sys-
tems that are at metabolic steady state (Fig.  1b) [82, 93]. 
This technique makes use of 13C-labeled tracers, combined 
with isotopomer balancing, metabolite balancing, and iso-
topic labeling measurements through techniques such as 
NMR [48, 72], mass spectrometry [9, 11, 12, 19, 26, 30, 
35], and tandem mass spectrometry [7, 17, 18, 31, 34], to 
estimate fluxes. In a 13C-MFA study, cells are cultured for 

Fig. 2   Three classes of flux analysis approaches: (1) flux balance 
analysis (FBA) is an optimization-based approach that uses a large-
scale model (e.g., genome-scale) and produces a flux solution space 
that satisfies an assumed cellular objective function (e.g., maximum 
cell growth). (2) Stoichiometric flux analysis is a set of data-driven 
approaches that use small-scale network models and external rate 

measurements to quantify fluxes in the simplified models. (3) Iso-
tope-based flux analysis is a set of advanced data-driven approaches 
that use medium-scale network models and isotopic labeling meas-
urements (e.g., GC-MS or NMR) to quantify highly precise metabolic 
fluxes in central carbon metabolism
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an extended period of time (typically >3 h) in the presence 
of a specifically labeled 13C-tracer, e.g., [1,2-13C]glucose 
[28], which results in the incorporation of 13C-atoms into 
metabolic intermediates and metabolic products. If a proper 
selection of 13C-tracer is made, then the measured 13C-labe-
ling distributions will be highly dependent on the relative 
values of intracellular metabolic fluxes [5]. Therefore, 
these 13C-labeling measurements can be used as additional 
constraints to estimate fluxes. In 13C-MFA, the following 
non-linear least squares regression problem is solved:

 

The objective of 13C-MFA is therefore to find a set of 
feasible intracellular metabolic fluxes that minimizes the 
variance-weighted sum of squared residuals (SSR) between 
the measured and predicted 13C-labeling measurements 
(x) and extracellular rate measurements (r). In 13C-MFA, 
both metabolic steady state and isotopic steady state are 
assumed; that is, metabolic fluxes and isotopic labeling are 
assumed to be constant in time (Fig. 1b). The time needed 
to reach isotopic steady state in a system will depend on 
several factors, including relative metabolic activity of 
cells; which metabolite pools were measured; which sub-
strate was used as the tracer; and the composition of the 
medium. For example, in mammalian cells, glycolytic 
metabolites may reach isotopic steady state within 3 h fol-
lowing the introduction of 13C-labeled glucose, but TCA 
cycle metabolites may require >24 h to approach isotopic 
steady state [2, 47, 66, 92]. On the other hand, for [U-13C] 
glutamine, TCA cycle metabolites typically reach isotopic 
steady state within 3 h, but it may take longer for glycolytic 
metabolites to approach isotopic steady state [4].

The main advantage of 13C-MFA for quantifying fluxes is 
the fact that a large number of redundant measurements can 
be obtained for flux estimation. For example, using GC–
MS one can easily obtain more than 50 mass isotopomer 
measurements to estimate on the order of ~5–20 unknown 
net and exchange fluxes in a model. The large number of 
redundant measurements greatly improves the accuracy and 
precision of estimated fluxes (Fig. 2). As such, the level of 
confidence in the flux results is much greater compared to 
stoichiometric MFA. Furthermore, significantly more com-
plex metabolic network models can be investigated with 
13C-MFA. For example, it is possible to estimate parallel 
metabolic pathways (e.g., pentose phosphate pathway vs. 
glycolysis vs. Entner–Doudoroff pathway), cyclic pathways 

(4)min SSR =

∑
(x − xm)2/σ 2

x +

∑
(r − rm)2/σ 2

r

s.t. fisotopomer model(v, x) = 0

R × v = r

S × v = 0

(e.g., pyruvate cycling between compartments), and bidirec-
tional reversible fluxes [16, 65, 82]. Other important appli-
cations of 13C-MFA include validation of metabolic network 
models and elucidation of reaction stereochemistries [14, 
25, 39].

While 13C-MFA is certainly more powerful for estimat-
ing in vivo metabolic fluxes than stoichiometric MFA, it is 
also more resource intensive, both experimentally and com-
putationally. Solving large sets of non-linear isotopomer 
balances is not trivial, and the non-linear nature of the least 
squares regression problem requires iterative algorithms. 
In the past decade, several mathematical approaches have 
been developed to reduce the computational burden of 
13C-MFA. The first modeling framework for simulat-
ing intracellular 13C-labeling was proposed by Zupke and 
Stephanopoulos based on atom mapping matrices [95]. In 
subsequent years, improved modeling approaches were 
introduced based on isotopomer balancing [64], cumomer 
balancing [83], bondomer balancing [69, 76], and most 
recently, elementary metabolite unit (EMU) balancing [10]. 
Currently, the EMU modeling approach is considered the 
most advanced and computationally most efficient method 
for simulating isotopic labeling distributions in metabolic 
network models. For example, it was shown that EMU sim-
ulations are several orders of magnitude more efficient than 
equivalent isotopomer and cumomer simulations without 
any loss of information [10]. For statistical analysis of flux 
results, confidence intervals of fluxes must be calculated 
using advanced statistical analysis methods that consider 
the inherent non-linearities in the isotopomer model [8], or 
alternatively, using computationally intensive Monte Carlo 
simulations [86]. Several powerful software packages have 
been developed in the past decade for 13C-MFA based on 
the EMU modeling framework, including Metran [87], 
OpenFlux [62], INCA [90], and 13CFLUX2 [81].

Flux analysis at isotopic non‑steady state: 13C‑NMFA

The assumption of isotopic steady state places limitations 
on the use of 13C-MFA for analyzing the metabolism of 
certain biological systems. For example, in autotrophic sys-
tems, isotopic steady-state labeling measurements provide 
no flux information [91], while in mammalian cell cultures, 
the time required to reach isotopic steady state can be on 
the order of hours or even days [47, 51, 66, 92]. To address 
these issues, a new methodology termed isotopic non-sta-
tionary 13C-MFA (13C-NMFA) was developed (Fig.  1c) 
[84]. In 13C-NMFA, metabolic fluxes are estimated at meta-
bolic (pseudo) steady state, i.e., still assuming constant 
metabolic fluxes and constant metabolite pool sizes for 
intracellular metabolites, but allowing transient 13C-labe-
ling data [x(t)] and pool size measurements (C) to be used 
for flux quantification [85]:
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As part of the parameter estimation procedure, ordi-
nary differential equations (ODE) of isotopomer balances 
are numerically integrated to simulate isotopomer distri-
butions as a function of time. The non-linear least squares 
regression techniques employed for parameter estimation 
in 13C-NMFA are similar to the techniques used in 13C-
MFA. However, in addition to estimating metabolic fluxes, 
metabolite pool sizes are fitted in 13C-NMFA to account for 
the observed labeling transients. The computational time 
for 13C-NMFA is significantly higher than for 13C-MFA. 
Fortunately, application of the EMU modeling framework 
has reduced the computational time by several orders of 
magnitude to less than an hour for a typical metabolic net-
work model encompassing all of central carbon metabo-
lism [90, 92].

Flux analysis at metabolic non‑steady state: DMFA

All of the analysis methods described above rely on meta-
bolic steady-state assumption, i.e. time-invariant metabolic 
fluxes. In recent years, several new techniques for so-called 
dynamic metabolic flux analysis (DMFA) have been devel-
oped [3, 41, 43, 56], which all focus on determining tem-
poral transients in metabolic fluxes from time-course data 
(Fig.  1d). The objective of DMFA is to determine meta-
bolic shifts in systems that are not at metabolic steady state 
from time-series of extracellular concentration [c(t)] and 
rate measurements [r(t)]:

DMFA methods generally assume that flux transients 
in cell culture are relatively slow, typically on the order 
of hours, compared to the time required to reach meta-
bolic (pseudo) steady state for intracellular metabolism, 
which is typically on the order of seconds to minutes. 
With this assumption, DMFA analysis can be accom-
plished through the following three steps: (1) the experi-
ment is divided into discrete time intervals; (2) average 

(5)

min SSR =

∑
(x(t) − xm(t))2/σ 2

x +

∑
(r − rm)2/σ 2

r

+

∑
(C − Cm)2/σ 2

C

s.t. C × dx/dt = fisotopomer model(v, x(t))

R × v = r

S × v = 0

(6)min SSR =

∑
(c(t) − cm(t))2/σ 2

c +

∑
(r(t)− rm(t))2/σ 2

r

s.t. R × v(t) = dc/dt

S × v(t) = 0

external rates are calculated for each time interval by 
taking derivatives of external concentration measure-
ments; and (3) average fluxes are calculated for each 
time interval using classical MFA [6]. The results of 
these steady-state models, evaluated at multiple time 
points, are then combined to obtain a time profile of flux 
transients during the culture. An alternative to the first 
step is to apply data smoothing on extracellular meas-
urements using splines [56], linear [61], or polynomial 
fitting [41], and then take derivatives of the smoothed 
data to increase temporal resolution of the estimated flux 
dynamics [56].

Recently, a new and improved approach for DMFA was 
introduced that directly fits the complete time-series data to 
quantify flux dynamics for the entire culture in a single step 
without the need for data pre-processing [38]. An advan-
tage of this method is that it does not depend on manually 
selecting time intervals to describe flux transients. Instead, 
rigorous statistical criteria are used to automatically detect 
the level of dynamic information present in the data [6]. 
The key advantage of DMFA compared to stationary MFA 
is that it provides information on metabolic transient, which 
cannot be observed using classical MFA, with only modest 
additional experimental and computational effort. How-
ever, since DMFA is still based on stoichiometric metabo-
lite balancing within an assumed (and typically simplified) 
metabolic model, DMFA carries the same limitations as 
MFA for resolving parallel pathways, cyclic pathways, and 
reversible reactions.

Flux analysis at metabolic and isotopic non‑steady state: 
13C‑DMFA

The logical extension to DMFA is to incorporate isotope 
labeling measurements to allow for the estimation of fluxes 
of cyclic pathways, parallel pathways, and reversible reac-
tions. Methods for 13C-DMFA (Fig. 1e), however, are still 
in their infancy and there is a clear need for further research 
and development in this area to make such methods more 
widely accessible and less cumbersome to implement. An 
illustrative example of 13C-DMFA is the analysis of a fed-
batch fermentation of E. coli overproducing 1,3-propan-
ediol [12]. In that study, metabolic fluxes were determined 
at 20 time points during an E. coli fed-batch culture from 
analysis of 13C-labeling dynamics of proteinogenic amino 
acids. To account for the transients in isotopic labeling of 
the substrate and proteinogenic amino acids two dilution 
parameters were introduced, termed D- and G-parameters, 
in analogy with the isotopomer spectral analysis (ISA) 
modeling framework [33]. Using this approach, detailed 
time-resolved metabolic flux maps were constructed and 
metabolic shifts could be identified during the fed-batch 
fermentation [12].
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Recent advances in metabolic flux analysis

An important recent advance in metabolic flux analysis is 
the use of parallel labeling experiments combined with rig-
orous data integration to estimate highly precise metabolic 
fluxes in complex systems [22]. This methodology was 
recently termed COMPLETE-MFA [40], short for comple-
mentary parallel labeling experiments technique for meta-
bolic flux analysis. Here, instead of performing a single 
13C-tracer experiment, as is the case in 13C-MFA, multiple 
tracer experiments are performed in parallel. Different iso-
topic tracers are used in each parallel culture. Labeling data 
from all experiments are then combined and rigorously 
integrated to estimate a single flux map that describes all 
experiments. The advantage of COMPLETE-MFA is that 
it produces flux results that are significantly more precise 
than can be obtained with 13C-MFA [40]. To date, the most 
extensive parallel labeling study performed has consisted of 
integrated analysis of 14 parallel labeling experiments in E. 
coli [24]. The COMPLETE-MFA methodology is currently 
viewed as the gold standard in 13C-based flux estimation.

Conclusions

Metabolic flux analysis has proven to be a valuable tool in 
metabolic engineering. 13C-MFA is now well-established 
and widely used for quantifying fluxes in many prokaryotic 
systems [23, 36, 73, 78]. However, 13C-MFA of eukary-
otic systems still remains challenging due to difficulties 
resulting from compartmentation of metabolites and meta-
bolic reactions [68, 79]. In mammalian systems, analysis 
is further complicated by difficulties in maintaining meta-
bolic steady state for extended periods of time and by the 
slow labeling dynamics. A key factor contributing to slow 
labeling dynamics in mammalian systems is the exchange 
of intra- and extracellular metabolites such as lactate and 
amino acids from the complex media [3]. Recently, detailed 
metabolic flux maps were established for CHO cells using 
both isotopic stationary 13C-MFA and isotopic non-sta-
tionary 13C-NMFA [2, 4]. Key advantages of 13C-NMFA 
include shorter labeling times and reduced usage of expen-
sive 13C-tracers [57, 84]. However, 13C-NMFA requires 
multiple measurements, i.e. time course of 13C-labeling, 
and more advanced algorithms for parameter fitting and 
statistical analysis. Fortunately, dedicated software tools 
for 13C-NMFA have recently become available and this is 
expected to accelerate the use of 13C-NMFA as a powerful 
tool for flux analysis [58, 90].

Difficulties in flux analysis related to compartmentali-
zation have not been properly addressed. Currently, there 
are no well-established methods to estimate compartment-
specific fluxes in eukaryotic systems, and it is still an open 

question whether 13C tracers provide the best strategy to 
resolve questions related to cellular compartmentation 
[42]. Without reliable extraction techniques for isolating 
compartment-specific metabolite pools and 13C-labeling, 
it may be difficult to elucidate parallel pathways in mul-
tiple compartments using current methodologies [55, 79]. 
Novel computational approaches are also needed for opti-
mal tracer experiment design [5, 20, 21, 80], and new ana-
lytical techniques to complement current data for determin-
ing fluxes in compartmentalized network models. Finally, 
improved techniques are needed to acquire dynamic flux 
maps. Several methods for DMFA have already been devel-
oped that model dynamic behavior and metabolic shifts 
in cell cultures based on analysis of dynamic extracellular 
metabolite data. To fully resolve intracellular metabolic 
flux maps under dynamically changing culture conditions, 
however, new 13C-DMFA methods will be needed to fully 
integrate dynamic metabolite concentrations and 13C-labe-
ling data.
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